Mostrando entradas con la etiqueta Información Útil de Leds. Mostrar todas las entradas
Mostrando entradas con la etiqueta Información Útil de Leds. Mostrar todas las entradas

domingo, 20 de julio de 2008

Para comprar Leds es necesario estar bien informado

En el marco de Lightfair 2008, Jeff McCullough y Mia Piaget del Pacific Northwest Laboratory la necesidad de aprender lo más posible sobre Leds antes de adquirir algún producto específico. Los expositores destacaron que un profesional de iluminación tiene que pedir los resultados de las pruebas de las lámparas antes de la compra ya que algunos productos no siempre cumplen todas sus especificaciones. ofrecieron una interesante conferencia sobre

Los asistentes al evento fueron informados de que algunos Leds funcionan muy bien, logrando superar a otras tecnología existentes, sin embargo la audiencia descubrió que la mayoría de los Leds en el mercado no funcionan de acuerdo a las posibilidades que ofrece la tecnología de Leds o Solid State Lighting. La mayoría de los productos no cumplen con las metas de los fabricantes y no superan a las tecnologías existentes. Los Leds bien diseñados, son totalmente capaces de competir con las lámparas tradicionales.

Los profesionales y consumidores de iluminación pueden investigar los reportes detallados sobre las pruebas de Leds en el Reporte de Evaluación de Producto del Programa CALiPER, siglas en ingles del Comercial Available Led Product Evaluation and Reporting, que depende del Departamento de Energía de Estados Unidos.

Se han llevado a cabo cinco rondas de pruebas y los resultados ya están disponibles en el sitio web del programa CALiPER. Más de 100 productos han sido evaluados, con un enfoque en el rendimiento general. Hasta el momento las pruebas han arrojado grandes diferencias entre productos:

  • Potencia de .6 W a 189 W
  • Salida de 10 lumens a 6272 lumens
  • Eficacia del 4 lumens por watt a 62 lumens por watt
  • CCT de 2600 a más de 7000
  • CRI de menos de 50 a 95

¿Qué puede aprender un consumidor de esta pruebas?, por ejemplo sobre Downlights:

  • Descubrir las diferencias en las especificaciones del fabricantes ves el rendimiento verdadero de la lámpara
  • Verificar la eficiencia de salida de la lámpara in situ
  • Conocer las pérdidas del sistema, incluyendo el efecto térmico
  • Conocer la distribución de la Intensidad y footcandles entregados

Las comparaciones están disponibles en las siguientes categorías:

  • Downlights
  • Gabinetes
  • Lámparas de repuesto
  • Lámpara de escritorio
  • Aplicaciones para exteriores

Para mayor información viste la pagina web de CALiPER

Fuente lighting.com


Spai Chile 2008

martes, 25 de marzo de 2008

Leds vs otras fuentes de iluminación

Los LED ofrecen muchas ventajas frente a las bombillas tradicionales. La importancia de dichas ventajas dependerá de su aplicación específica, pero incluyen:

Ventajas en general:

· Larga duración (+50.000 horas).
· Bajo coste de mantenimiento.
· Más eficiencia que las lámparas incandescentes y las halógenas.
· Encendido instantáneo.
· Completamente graduable sin variación de color.
· Emisión directa de luces de colores sin necesidad de filtros.
· Gama completa de colores.
· Control dinámico del color y puntos blancos ajustables Ventajas de diseño:
· Libertad total de diseño con luces invisibles.
· Colores intensos, saturados.
· Luz direccionada para sistemas más eficaces.
· Iluminación fuerte, a prueba de vibraciones. Ventajas medioambientales:
· Sin mercurio
· Sin irradiaciones de infrarrojos o ultravioletas en la luz visible

Ventajas de diseño:

· Libertad total de diseño con luces invisibles.
· Colores intensos, saturados.
· Luz direccionada para sistemas más eficaces.
· Iluminación fuerte, a prueba de vibraciones.

Ventajas medioambientales:
· Sin mercurio
· Sin CO2
· Sin irradiaciones de infrarrojos o ultravioletas en la luz visible

miércoles, 12 de marzo de 2008

Características físicas de los leds

Principio físico

El fenómeno de emisión de luz está basado en la teoría de bandas, por la cual, una tensión externa aplicada a una unión p-n polarizada directamente, excita los electrones, de manera que son capaces de atravesar la banda de energía que separa las dos regiones.Si la energía es suficiente los electrones escapan del material en forma de fotones.

Cada material semiconductor tiene unas determinadas características que y por tanto una longitud de onda de la luz emitida.

A diferencia de las lámparas de incandescencia cuyo funcionamiento es por una determinada tensión, los Led funcionan por la corriente que los atraviesa. Su conexión a una fuente de tensión constante debe estar protegida por una resistencia limitadora. En la siguiente figura se puede apreciar una representación característica de potencia-intensidad.

Teoría de bandas

En un átomo aislado los electrones pueden ocupar determinados niveles energéticos pero cuando los átomos se unen para formar un cristal, las interacciones entre ellos modifican su energía, de tal manera que cada nivel inicial se desdobla en numerosos niveles, que constituyen una banda, existiendo entre ellas huecos, llamados bandas energéticas prohibidas, que sólo pueden salvar los electrones en caso de que se les comunique la energía suficiente. En los aislantes la banda inferior menos energética (banda de valencia) está completa con los e- más internos de los átomos, pero la superior (banda de conducción) está vacía y separada por una banda prohibida muy ancha (~ 10 eV), imposible de atravesar por un e-. En el caso de los conductores las bandas de conducción y de valencia se encuentran superpuestas, por lo que cualquier aporte de energía es suficiente para producir un desplazamiento de los electrones.

Entre ambos casos se encuentran los semiconductores, cuya estructura de bandas es muy semejante a los aislantes, pero con la diferencia de que la anchura de la banda prohibida es bastante pequeña. Los semiconductores son, por lo tanto, aislantes en condiciones normales, pero una elevación de temperatura proporciona la suficiente energía a los electrones para que, saltando la banda prohibida, pasen a la de conducción, dejando en la banda de valencia el hueco correspondiente.

En el caso de los diodos Led los electrones consiguen saltar fuera de la estructura en forma de radiación que percibimos como luz (fotones).

Composición de los Leds

Para obtener colores distintos en los diodos LED se aplican diferentes composiciones, a continuación haremos una breve descripción de algunas de las distintas posibilidades. Vamos a describir la composición que caracteriza a cada uno de los tres colores más utilizados: el rojo, verde y el amarillo.

Led Rojo

Formado por GaP consiste en una unión p-n obtenida por el método de crecimiento epitaxial del cristal en su fase líquida, en un substrato.

La fuente luminosa está formada por una capa de cristal p junto con un complejo de ZnO, cuya máxima concentración está limitada, por lo que su luminosidad se satura a altas densidades de corriente. Este tipo de Led funciona con baja densidades de corriente ofreciendo una buena luminosidad, utilizándose como dispositivo de visualización en equipos portátiles. El constituido por GaAsP consiste en una capa p obtenida por difusión de Zn durante el crecimiento de un cristal n de GaAsP, formado en un substrato de GaAs, por el método de crecimiento epitaxial en fase gaseosa. Actualmente se emplea los Led de GaAlAs debido a su mayor luminosidad.
El máximo de radiación se halla en la longitud de onda 660 nm.

Led anaranjado y amarillo

Están compuestos por GaAsP al igual que sus hermanos los rojos pero en este caso para conseguir luz anaranjada y amarilla así como luz de longitud de onda más pequeña, lo que hacemos es ampliar el ancho de la “banda prohibida” mediante el aumento de fósforo en el semiconductor.

Su fabricación es la misma que se utiliza para los diodos rojos, por crecimiento epitaxial del cristal en fase gaseosa, la formación de la unión p-n se realiza por difusión de Zn.

Como novedad importante en estos Leds se mezcla el área emisora con una trampa isoelectrónica de nitrógeno con el fin de mejorar el rendimiento.

Led Verde

El Led verde está compuesto por GaP. Se utiliza el método de crecimiento epitaxial del cristal en fase líquida para formar la unión p-n.Al igual que los Leds amarillos, también se utiliza una trampa isoelectrónica de nitrógeno para mejorar el rendimiento. Debido a que este tipo de Led posee una baja probabilidad de transición fotónica, es importante mejorar la cristalinidad de la capa n. La disminución de impurezas a larga la vida de los portadores, mejorando la cristalinidad.

Su máxima emisión se consigue en la longitud de onda 555 nm.


Criterios de elección


Dimensiones y color del diodo


Actualmente los Leds tienen diferentes tamaños, formas y colores. Tenemos Leds redondos, cuadrados, rectangulares, triangulares y con diversas formas.Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz blanca. Las dimensiones en los Led redondos son 3mm, 5mm, 10mm y uno gigante de 20mm. Los de formas poliédricas suelen tener unas dimensiones aproximadas de 5×5mm.

2. Ángulo de vista

Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo práctico de aparato realizado.Cuando el Led es puntual la emisión de luz sigue la ley de Lambert, permite tener un ángulo de vista relativamente grande y el punto luminoso se ve bajo todos los ángulos.

3. Luminosidad

La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor, el brillo es proporcional a la superficie de emisión. Si el Led es puntual, el punto será más brillante, al ser una superficie demasiado pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual.

Estructura de un Led

Existen numerosos encapsulados disponibles para los leds y su cantidad se incrementa de año en año a medida que las aplicaciones de los leds se hacen más especificas.

Por ahora nos detendremos a estudiar las partes constitutivas de un led a través de la siguiente imagen la cual representa tal vez el encapsulado más popular de los leds que es el T1 ¾ de 5mm. de diámetro.

Como vemos el led viene provisto de los dos terminales correspondientes que tienen aproximadamente 2 a 2,5 cm de largo y sección generalmente de forma cuadrada. En el esquema podemos observar que la parte interna del terminal del cátodo es más grande que el ánodo, esto es porque el cátodo está encargado de sujetar al sustrato de silicio, por lo tanto será este terminal el encargado de disipar el calor generado hacia el exterior ya que el terminal del ánodo se conecta al chip por un delgado hilo de oro, el cual prácticamente no conduce calor. Es de notar que esto no es así en todos los leds, solo en los últimos modelos de alto brillo y en los primeros modelos de brillo estándar, ya que en los primeros led de alto brillo es al revés. Por eso no es buena política a la hora de tener que identificar el cátodo, hacerlo observando cual es el de mayor superficie. Para eso existen dos formas más convenientes, la primera y más segura es ver cuál es el terminal más corto, ese es siempre el cátodo no importa que tecnología sea el led. La otra es observar la marca plana que también indica el cátodo, dicha marca plana es una muesca o rebaje en un reborde que tiene los leds. Otra vez este no es un método que siempre funciona ya que algunos fabricantes no incluyen esta muesca y algunos modelos de leds pensados para aplicaciones de clúster donde se necesitan que los leds estén muy pegados, directamente no incluye este reborde.

El terminal que sostiene el sustrato cumple otra misión muy importante, la de reflector, ya que posee una forma parabólica o su aproximación semicircular, este es un punto muy crítico en la fabricación y concepción del led ya que un mal enfoque puede ocasionar una pérdida considerable de energía o una proyección despareja.

Un led bien enfocado debe proyectar un brillo parejo cuando se proyecta sobre una superficie plana. Un led con enfoque defectuoso se puede identificar porque proyecta formas que son copia del sustrato y a veces se puede observar un aro más brillante en el exterior de circulan, síntoma seguro de que la posición del sustrato se encuentra debajo del centro focal del espejo terminal.

Dentro de las características ópticas del led aparte de su luminosidad esta la del ángulo de visión, se define generalmente el ángulo de visión como el desplazamiento angular desde la perpendicular donde la potencia de emisión disminuye a la mitad. Según la aplicación que se le dará al led se necesitara distintos ángulos de visión así son típicos leds con 4, 6, 8, 16, 24, 30, 45,60 y hasta 90 grados de visión. Generalmente el ángulo de visión está determinado por el radio de curvatura del reflector del led y principalmente por el radio de curvatura del encapsulado. Por supuesto mientras más chico sea el ángulo y a igual sustrato semiconductor se tendrá una mayor potencia de emisión y viceversa.

Otro componente del led que no es muestra en la figura pero que es común encontrarlo en los led de 5mm son los stand-off o separadores, son topes que tienen los terminales y sirven para separar los leds de la plaqueta en aplicaciones que así lo requieren, generalmente si se va colocar varios leds en una plaqueta conveniente que no tenga stand - off ya que de esta forma el encapsulado del led puede apoyarse sobre la plaqueta lo que le dará la posición correcta, esto es especialmente importante en leds con ángulo de visión reducido.Por último tenemos el encapsulado epoxi que es el encargado de proteger al semiconductor de las inclemencias ambientales y como dijimos ayuda a formar el haz de emisión.
Existen básicamente 4 tipos de encapsulado si lo catalogamos por su color.· Transparente o clear water (agua transparente): Es el utilizado en leds de alta potencia de emisión, ya que el propósito de estos leds es fundamentalmente iluminar, es importante que estos encapsulados no absorban de ninguna manera la luz emitida.

· Coloreados o tinted: Similar al anterior pero coloreado con el color de emisión de sustrato similar al vidrio de algunas botellas, se usa principalmente en leds de mediana potencia y/o donde sea necesario identificar el color del led aun apagado.

· Difuso o difused: Estos leds tiene un aspecto más opacos que el anterior y están coloreados con el color de emisión, poseen pequeñas partículas en suspensión de tamaño microscópicos que son las encargadas de desviar la luz, este tipo de encapsulado le quita mucho brillo al led pero le agrega mucho ángulo de visión ya que los múltiples rebotes de la luz dentro del encapsulo le otorgan un brillo muy parejo sobre casi todos los ángulos prácticos de visión.

· Lechosos o Milky: Este tipo de encapsulado es un tipo difuso pero sin colorear, estos encapsulado son muy utilizados en leds bicolores o multicolores. El led bicolor es en realidad un led doble con un cátodo común y dos ánodos (3 terminales) o dos led colocados en contraposición (2 terminales). Generalmente el primer caso con leds rojo y verde es el más común aunque existen otras combinaciones incluso con más colores.

Es muy importante hacer notar que en todos los casos el sustrato del led es el que determina el color de emisión y no el encapsulado. Un encapsulado con frecuencia de paso distinta a la frecuencia de emisión del sustrato solo lograría filtrar la luz del led, bajando así su brillo aparente al igual que todo objeto colocado delante de él.



Intensidad relativa vs Longitud de onda (P)





Forward Current vs Forward Voltage
Red 5, Ultra Red 4, HE Red 6, Orange 7, Bright Red 3,
HE Green 9, Yellow 8



Relative Luminous Intensity vs Forward Current
Ultra Red 4, HE Red 6, Orange 7, Yellow 8, HE Green 9
Red 5, Bright Red 3, Pure Blue C




Forward Current vs Ambient Air Temperature
Red 5, Ultra Red 4, HE Red 6, Orange 7,
HE Green 9, Ultra Blue D, Yellow 8, Bright Red 3




Relative Luminous Intensity vs Ambient Temperature
Red 5, Bright Red 3, Ultra Red 4, HE Green 9, Yellow 8




Maximum Tolerable Peak Current vs Pulse Duration
Ultra Red, Red, HE Red, Orange, Yellow, HE Green,
Ultra Green (523nm), Ultra Green (502nm), Pure Blue, Ultra Blue





Uso de la retroiluminación LEDs superficies








Cuadro de Colores





Los cuadros, gráficos e imágenes se realizan a través de la cortesía de LEDtronics.

Responsabilidad: La información en este documento se proporcionan elementos básicos para educar a uno en el que operan las propiedades y características de los LED del usuario. Nosotros no implica que la información es exacta o aplicable a todos los aspectos de uso de LED. Cada solicitud tendrá que ser realizado por sus propios méritos y con pleno entendimiento de que los daños y las lesiones son de exclusiva responsabilidad del "constructor". Nosotros no prescindir de ingeniería de asesoramiento. Usted necesidad de determinar los productos específicos que necesitará para su aplicación específica.

Spai Chile 2008


viernes, 7 de marzo de 2008

Historia de los leds


... "Un LED, siglas en inglés de Light-Emitting Diode (diodo emisor de luz) es un dispositivo semiconductor (diodo) que emite luz cuasi-monocromática, es decir, con un espectro muy angosto, cuando se polariza de forma directa y es atravesado por una corriente eléctrica. El color, (longitud de onda), depende del material semiconductor empleado en la construcción del diodo, pudiendo variar desde el ultravioleta, pasando por el espectro de luz visible, hasta el infrarrojo, recibiendo éstos últimos la denominación de IRED (Infra-Red Emitting Diode)"

El primer led comercialmente utilizable fue desarrollado en el año 1962, combinando Galio, Arsénico y Fósforo (GaAsP) con lo cual se consiguió un led rojo con una frecuencia de emisión de unos 650 nm con una intensidad relativamente baja, aproximadamente 10 mcd @20mA, (mcd = milicandela, posteriormente explicaremos las unidades fotométricas y radiométricas utilizadas para determinar la intensidad lumínica de los leds). El siguiente desarrollo se basó en el uso del Galio en combinación con el Fósforo (GaP) con lo cual se consiguió una frecuencia de emisión del orden de los 700 nm. A pesar de que se conseguía una eficiencia de conversión electrón- fotón o corriente-luz más elevada que con el GaAsP, esta se producía a relativamente baja corrientes, un incremento en la corriente no generaba un aumento lineal en la luz emitida, sumado a esto se tenía que la frecuencia de emisión estaba muy cerca del infrarrojo una zona en la cual el ojo no es muy sensible por lo que el led parecía tener bajo brillo a pesar de su superior desempeño de conversión.

Los siguientes desarrollos, ya entrada la década del 70, introdujeron nuevos colores al espectro. Distinta proporción de materiales produjo distintos colores. Así se consiguieron colores verde y rojo utilizando GaP y ámbar, naranja y rojo de 630nm (el cual es muy visible) utilizando GaAsP. También se desarrollaron leds infrarrojos, los cuales se hicieron rápidamente populares en los controles remotos de los televisores y otros artefactos del hogar.

En la década del 80 un nuevo material entró en escena el GaAlAs Galio, Aluminio y Arsénico. Con la introducción de este material el mercado de los leds empezó a despegar ya que proveía una mayor performance sobre los leds desarrollados previamente. Su brillo era aproximadamente 10 veces superior y además se podía utilizar a elevadas corrientes lo que permitía utilizarlas en circuitos multiplexados con lo que se los podía utilizar en display y letreros de mensaje variable. Sin embargo este material se caracteriza por tener un par de limitaciones, la primera y más evidente es que se conseguían solamente frecuencias del orden de los 660nm (rojo) y segundo que se degradan más rápidamente en el tiempo que los otros materiales, efecto que se hace más notorio ante elevadas temperaturas y humedades. Hay que hacer notar que la calidad del encapsulado es un factor fundamental en la ecuación temporal. Los primeros desarrollos de resinas epoxi para el encapsulado poseían una no muy buena impermeabilidad ante la humedad, además los primeros leds se fabricaban manualmente, el posicionamiento del sustrato y vertido de la resina era realizado por operarios y no por maquinas automáticas como hoy en día, por lo que la calidad del led era bastante variable y la vida útil mucho menor que la esperada. Hoy en día esos problemas fueron superados y cada vez son más las fábricas que certifican la norma ISO 9000 de calidad de proceso. Además últimamente es más común que las resinas posean inhibidores de rayos UVA y UVB, especialmente en aquellos leds destinado al uso en el exterior.

En los 90 se apareció en el mercado tal vez el más exitoso material para producir leds hasta la fecha el AlInGaP Aluminio, Indio, Galio y Fósforo. Las principales virtudes de este tetar compuesto son que se puede conseguir una gama de colores desde el rojo al amarillo cambiando la proporción de los materiales que lo componen y segundo, su vida útil es sensiblemente mayor, a la de sus predecesores, mientras que los primeros leds tenía una vida promedio efectiva de 40.000 horas los leds de AlInGaP podían más de 100.000 horas aun en ambientes de elevada temperatura y humedad.

Es de notar que muy difícilmente un led se queme, si puede ocurrir que se ponga en cortocircuito o que se abra como un fusible e incluso que explote si se le hace circular una elevada corriente, pero en condiciones normales de uso un led se degrada o sea que pierde luminosidad a una tasa del 5 % anual. Cuando el led ha perdido el 50% de su brillo inicial, se dice que ha llegado al fin de su vida útil y eso es lo que queremos decir cuando hablamos de vida de un led. Un rápido cálculo nos da que en un año hay 8760 horas por lo que podemos considerar que un LED de AlInGaP tiene una vida útil de más de 10 años.

Como dijimos uno de factores fundamentales que atentan contra este número es la temperatura, tanto la temperatura ambiente como la interna generada en el chip, por lo tanto luego nos referiremos a técnicas de diseño de circuito impreso para bajar la temperatura. Explicaremos un detalle de mucha importancia respecto a los leds y su construcción. Cuando se fabrica el led, se lo hace depositando por capas a modo de vapores, los distintos materiales que componen el led, estos materiales se depositan sobre una base o sustrato que influye en la dispersión de la luz. Los primeros leds de AlInGaP se depositaban sobre sustratos de GaAs el cual absorbe la luz innecesariamente. Un adelanto en este campo fue reemplazar en un segundo paso el sustrato de GaAs por uno de GaP el cual es transparente, ayudando de esta forma a que más luz sea emitida fuera del encapsulado. Por lo tanto este nuevo proceso dio origen al TS AlInGaP (Tranparent Substrate) y los AlInGaP originales pasaron a denominarse AS AlInGaP (Absorbent Susbtrate). Luego este mismo proceso se utilizo para los led de GaAlAs dando origen al TS GaAlAs y al As GaAlAs. En ambos casos la Eficiencia luminosa se incrementaba típicamente en un factor de 2 pudiendo llegar en algunos casos a incrementarse en un factor de 10. Como efecto secundario de reemplazar el As por el TS se nota un pequeño viro al rojo en la frecuencia de emisión, generalmente menor a los 10nm.A final de los 90 se cerró el circulo sobre los colores del arco iris, cuando gracias a las tareas de investigación del Shuji Nakamura, investigador de Nichia, una pequeña empresa fabricante de leds de origen japonés, se llego al desarrollo del led azul, este led siempre había sido difícil de conseguir debido a su elevada energía de funcionamiento y relativamente baja sensibilidad del ojo a esa frecuencia (del orden de los 460 nm). Hoy en día coexisten varias técnicas diferentes para producir luz azul, una basada en el SiC Silicio – Carbono otra basada en el GaN Galio – Nitrógeno, otra basada en InGaN Indio-Galio-Nitrógeno sobre substrato de Zafiro y otra GaN sobre sustrato SiC. El compuesto GaN, inventado por Nakamura, es actualmente el más utilizado. Otras técnicas como la de ZnSe Zinc – Selenio ha sido dejadas de lado y al parecer el SiC seguirá el mismo camino debido a su bajo rendimiento de conversión y elevada degradación con la temperatura.

Dado que el azul es un color primario, junto con el verde y el rojo, tenemos hoy en día la posibilidad de formar el blanco con la combinación de los tres y toda la gama de colores del espectro, esto permite que los display gigantes y carteles de mensajes variables full color se hagan cada día más habituales en nuestra vida cotidiana. Es también posible lograr otros colores con el mismo material GaN, como por ejemplo el verde azulado o turquesa, de una frecuencia del orden de los 505 nm. Este color es importante ya que es el utilizado para los semáforos y entra dentro de la norma IRAM 2442 Argentina y VTCSH parte 2 americana y otras. Su tono azulado lo hace visible para las personas daltónicas. El daltonismo es una enfermedad congénita que hace a quien lo padece ser parcialmente ciego a determinadas frecuencias de color, generalmente dentro de ellas está la correspondiente al verde puro que tiene una frecuencia del orden de los 525 nm.

Otros colores también son posibles de conseguir como por ejemplo el púrpura, violeta o ultravioleta. Este último es muy importante para la creación de una forma más eficiente de producir luz blanca que la mera combinación de los colores primarios, ya que añadiendo fósforo blanco dentro del encapsulado, este absorbe la radiación ultravioleta y emite frecuencia dentro de todo el espectro visible, logrando luz blanca en un proceso similar al que se produce en el interior de los tubos fluorescentes. A veces el fósforo posee una leve tonalidad amarillenta para contrarrestar el tono azulado de la luz del semiconductor. Luego de tantos materiales y frecuencias de ondas sería bueno resumir todo esto en una forma más clara, es por ello en la tabla 1 se detallan los distintos frecuencias de emisión típica de los leds comercialmente disponibles y sus materiales correspondientes. Los datos técnicos fueron obtenidos de distintos fabricantes. Es de notar que la resolución del ojo es del orden de los 3 a 5 nm según el color de que se trate.



La pantalla en Freemont Street en Las Vegas es actualmente la más grande del mundo.


Mina del Edén, Ciudad de Zacatecas

Spai Chile 2008

lunes, 3 de marzo de 2008

Lámpara de Led v/s lámpara de vapor de mercurio

Usted sabe cuanto es el costo de uso de una ampolleta de led versus una vapor de mercurio que vemos en las calles, bueno acá le damos los datos

Lámpara de la calle (LM) ................... 60 W Lampara de led ............ 500W Lámpara de V. Mercurio

Metros a 8 de Distancia (Lux*) ........... 33,8 (5/21/2007 test1) ......... 33,8 (5/21/2007 test2)

Poder (watts) .................................... 60 Watts ........................... 500 Watts

Gasto de Lámparas ( Kwh**) .............. 0,06 KWH .......................... 0,5 KWH

Gasto de Energia Anual
(a 12 horas diarias)............................ 262,8 KW .......................... 2190 KW

Tasa de Energia al Año (costo)
($0,65***/kilowatt)............................ $ 170,82 ........................... $ 1423,5

Gatos de Energia (3 años de uso) ........ $ 512,46 ............................ $ 4,270,50

Para 10 kilometros de lámparas
(se necesitan 500 lamparas y su
energia a 3 años (0,65/Kwh) ............... $ 256,230 .......................... $ 2,135,250

Tasa de Cambio de las lámparas
( a los 3 años) ................................... 0 Unidades ......................... 642,857,14 Unidades

Gasto Total ...................................... $ 256,230 .......................... $ 2,778,107,10

Ahorro Total $ 2,521,877,10


60 W. Lampara de Led
(5/21/2007 test1)


500W Lámpara de V. Mercurio
(5/21/2007 test2)


Notas:
* Lux : El lux, símbolo lx, es la Unidad derivada del SI de iluminancia o nivel de iluminación. Es igual a un lumen /m².

** Kwh : El kilovatio hora, abreviado kWh, es una unidad de energía. Equivale a la energía desarrollada por una potencia de un kilovatio (kW) durante una hora, equivalente a 3,6 millones de julios.

*** $0.65 : Es la medida (Valor monetario que le damos a nuestra comparación, puede ser cualquier valor monetario.

domingo, 2 de marzo de 2008

Presentación de Spai Chile

Introducción

Casi todos estamos familiarizados con los leds, los conocemos de verlos en el frente de muchos equipos de uso cotidianos, como radios, televisores, teléfonos celulares y display de relojes digitales, sin embargo la falta de una amplia gama de colores y una baja potencia lumínica han limitado su uso considerablemente. No obstante eso esta cambiando gradualmente con la introducción de nuevos materiales que han permitido crear leds de prácticamente todo el espectro visible de colores y ofreciendo al mismo tiempo una eficiencia lumínica que supera a la de las lámparas incandescentes. Estos brillantes, eficientes y coloridos nuevos leds están expandiendo su dominio a un amplio rango de aplicaciones de iluminación desplazando a su anterior campo de dominio que era el de la mera indicación. Si consideramos su particularidad de bajo consumo energético y su prácticamente imbatible ventaja para su uso en señalamiento exterior (carteles de mensaje variables y señales de transito) tendremos que el futuro de estos pequeños dispositivos semiconductores es realmente muy promisorio tal como lo indican los números actuales de crecimiento de mercado a nivel mundial.

Cómo funcionan los leds?

Para responder esta respuesta correctamente tendremos que empezar diciendo que el led es un diodo que emite luz (Light emitting Diode) y que un diodo es un semiconductor y que los semiconductores están hechos fundamentalmente de silicio. Como veremos mas adelante los led están hechos de una gran gama de elementos de la tabla periódica, pero nos ocuparemos ahora de explicar el funcionamiento del diodo a través del comportamiento del Silicio, ya que este es el material fundamental y mas popular de la electrónica moderna.

El silicio es un elemento muy común en la naturaleza, tal es así que se encuentra en la arena de las playas y en los cristales de cuarzo. Si miramos donde se encuentra el Silicio (SI) en la tabla periódica de los elementos lo encontraremos con el numero atómico 14 y sus vecinos inmediatos son el Galio (Ga), Aluminio (Al), Boro (B), Carbono (C), Nitrógeno (N), Fósforo (P), Arsénico (As) y Germanio (Ge). Recuerden estos elementos porque forman parte de los distintos tipos de tecnologías de leds y son los que determinaran el color de emisión.

El carbono, el silicio y el galio poseen una propiedad única en su estructura electrónica, cada uno posee 4 electrones en su orbita externa lo que les permite combinar o compartir estos electrones con 4 átomos vecinos, formando así una malla cuadricular o estructura cristalina, de esta forma no quedan electrones libres como en el caso de los conductores que poseen electrones libres en su ultima orbita que pueden moverse a través de los átomos formando así una corriente eléctrica.

Por lo dicho, el silicio en su forma pura es básicamente un aislante. Podemos hacerlo conductor al mezclarlo con pequeñas cantidades de otros elementos, a este proceso se lo denomina “dopaje”. Hay dos tipos de dopaje:

Dopaje N: En este caso el silicio se dopa con Fósforo o Arsénico en pequeñas cantidades. El Fósforo y el Arsénico tienen 5 electrones en su orbita externa que terminan sobrando cuando se combina en una red de átomos de silicio. Este quinto electrón se encuentra libre para moverse, lo que permite que una corriente eléctrica fluya a través del Silicio. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente, por ejemplo al agregar un átomo de impurezas por cada 108 (1000 millones) átomos de Silicio se incrementa la conductividad en un factor de 10. Los electrones tienen una carga negativa, por eso se llama dopaje tipo N.

Dopaje P: En este caso el silicio se dopa con Boro o Galio en pequeñas cantidades. El Boro y el Galio tienen 3 electrones en su orbita externa por lo que termina faltando un electrón cuando se combina en una red de átomos de Silicio. Este electrón faltante ocasiona que se formen huecos en la red. Estos huecos permiten que se circule una corriente a través del Silicio ya que ellos aceptan de muy buena gana ser “tapados” por un electrón de un átomo vecino, claro que esto provoca que se forme un hueco en el átomo que desprendió dicho electrón, este proceso se repite por lo que se forma una corriente de huecos a través de la red. Es de notar que en todos los caso lo único que se mueve fuera del átomo son los electrones, pero en este caso dicho movimiento provoca un efecto similar o equivalente al movimiento de huecos. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente. Los agujeros tienen una carga positiva, por eso se llama dopaje tipo P

Tanto el Silicio dopado N como el Silicio dopado P tienen propiedades conductoras pero a decir de verdad no son muy buenos conductores de ahí el nombre de semiconductor.

Por separado ambos semiconductores no dicen mucho, pero cuando se juntan producen efectos interesantes, especialmente entre la juntura de ambos.

Veremos que sucede cuando se combina ambos materiales

Creando el diodo:

Cuando unimos Silicio N y Silicio P, tenemos una juntura semiconductora P-N este es el dispositivo semiconductor mas simple y es conocido con el nombre de diodo y es la base de toda la electrónica moderna.

El diodo permite la circulación de corriente en un sentido pero no en el sentido contrario tal como sucede en los molinetes de subte con las personas.

Cuando conectamos el diodo a una batería con el terminal P al borne negativo y el terminal N al borne positivo (lo conectamos en inversa) tenemos que en el primer caso los huecos son atraídos por los electrones que provienen del terminal negativo de la batería y ese es el fin de la historia. Lo mismo sucede del lado N, los electrones libres son atraídos hacia el terminal positivo.

Por lo tanto no circula corriente por la juntura ya que electrones y agujeros se movieron en sentido contrario (hacia los terminales del diodo)

Si damos vuelta el diodo (lo conectamos en directa), tenemos que los electrones libres del terminal N se repelerán con los electrones libres del terminal negativo de la batería por lo que los primeros se dirigirán a la zona de juntura. En el terminal positivo tenemos que los huecos del terminal P se repelerán con los huecos del terminal positivo de la batería por lo tanto los huecos del semiconductor se dirigirán a la juntura.

En la juntura los electrones y los huecos se recombinan formando así una corriente que fluirá en forma permanente.

Un diodo real cuando se conecta en reversa tiene una pequeña corriente de perdida del orden de los 10 microamperes que se mantiene aproximadamente constante mientras la tensión de la batería no supere un determinado nivel, luego del cual la corriente crece abruptamente, esta zona se llama zona de ruptura o avalancha. Generalmente esta zona queda fuera de las condiciones normales de funcionamiento. Hay que mencionar que dicha corriente inversa es casi linealmente dependiente de la temperatura.

Cuando el diodo se conecta en directa veremos que sobre sus extremos se produce una caída de tensión del orden de los 0.6 volts para los diodos de silicio normales. Esta caída de tensión es un reflejo de la energía necesaria para que los electrones salten la juntura y es característica de cada material. Este valor es conocido como potencial de salto de banda (band gap)

Tenemos entonces que para sacar un electrón de su orbita necesitamos energía y que esta se pierde en el transcurso de su recorrido dentro del diodo, esta energía se transforma en radiación, básicamente calor u ondas infrarrojas en un diodo normal.

De diodos a Leds

Como dijimos, si la energía que se necesita es pequeña, se tendrá que dicha energía se emitirá en ondas infrarrojas de relativamente baja frecuencia, si el material necesitara mas energía para que se produzca el paso de la corriente, las ondas que emitirá el diodo tendrían mas energía y se pasaría de emitir luz infrarroja a roja, naranja, amarilla, verde, azul, violeta y ultravioleta.

O sea el diodo emitiría luz monocromática en el espectro visible y más allá. Ya tenemos el led!!!

Por supuesto a más alta frecuencia mayor será la caída de tensión por lo que pasaremos de 0.6v de caída para un diodo normal a 1,3 v para un led infrarrojo, 1,8 v. para un led rojo, 2,5 v. para uno verde, y 4,3v. para un led azul y más de 5v. para un led ultravioleta.

Estas distintas longitudes de ondas se forman combinando distintas proporciones de materiales, los mismos que se enumeraron al inicio.

Encapsulado de los leds

Existen numerosos encapsulados disponibles para los leds y su cantidad se incrementa de año en año a medida que las aplicaciones de los leds se hacen mas especificas.
Por ahora nos detendremos a estudiar las partes constitutivas de un led a través de la figura 1.1 la cual representa tal vez el encapsulado mas popular de los leds que es el T1 ¾ de 5mm. de diámetro.



Fig 1.1 Partes constitutivas de un LED

Como vemos el led viene provisto de los dos terminales correspondientes que tienen aproximadamente 2 a 2,5 cm de largo y sección generalmente de forma cuadrada. En el esquema podemos observar que la parte interna del terminal del cátodo es más grande que el ánodo, esto es porque el cátodo esta encargado de sujetar al sustrato de silicio, por lo tanto será este terminal el encargado de disipar el calor generado hacia el exterior ya que el terminal del ánodo se conecta al chip por un delgado hilo de oro, el cual prácticamente no conduce calor. Es de notar que esto no es así en todos los leds, solo en los últimos modelos de alto brillo y en los primeros modelos de brillo estándar, ya que en los primeros led de alto brillo es al revés. Por eso no es buena política a la hora de tener que identificar el cátodo, hacerlo observando cual es el de mayor superficie. Para eso existen dos formas más convenientes, la primera y más segura es ver cual es el terminal mas corto, ese es siempre el cátodo no importa que tecnología sea el led. La otra es observar la marca plana que también indica el cátodo, dicha marca plana es una muesca o rebaje en un reborde que tiene los leds. Otra ves este no es un método que siempre funciona ya que algunos fabricantes no incluyen esta muesca y algunos modelos de leds pensados para aplicaciones de cluster donde se necesitan que los leds estén muy pegados, directamente no incluye este reborde.

El terminal que sostiene el sustrato cumple otra misión muy importante, la de reflector, ya que posee una forma parabólica o su aproximación semicircular, este es un punto muy critico en la fabricación y concepción del led ya que un mal enfoque puede ocasionar una perdida considerable de energía o una proyección despareja.

Un led bien enfocado debe proyectar un brillo parejo cuando se proyecta sobre una superficie plana. Un led con enfoque defectuoso se puede identificar porque proyecta formas que son copia del sustrato y a veces se puede observar un aro mas brillante en el exterior de circulo, síntoma seguro de que la posición del sustrato se encuentra debajo del centro focal del espejo terminal.

Dentro de las características ópticas del led aparte de su luminosidad esta la del ángulo de visión, se define generalmente el ángulo de visión como el desplazamiento angular desde la perpendicular donde la potencia de emisión disminuye a la mitad. Según la aplicación que se le dará al led se necesitara distintos ángulos de visión así son típicos leds con 4,6,8,16,24,30,45,60 y hasta 90 grados de visión. Generalmente el ángulo de visión esta determinado por el radio de curvatura del reflector del led y principalmente por el radio de curvatura del encapsulado. Por supuesto mientras mas chico sea el ángulo y a igual sustrato semiconductor se tendrá un mayor potencia de emisión y viceversa

Otro componente del led que no es muestra en la figura pero que es común encontrarlo en los led de 5mm son los stand-off o separadores, son topes que tienen los terminales y sirven para separar los leds de la plaqueta en aplicaciones que así lo requieren, generalmente si se va colocar varios leds en una plaqueta conveniente que no tenga stand - off ya que de esta forma el encapsulado del led puede apoyarse sobre la plaqueta lo que le dará la posición correcta, esto es especialmente importante en leds con ángulo de visión reducido.

Por ultimo tenemos el encapsulado epoxi que es el encargado de proteger al semiconductor de las inclemencias ambientales y como dijimos ayuda a formar el haz de emisión.

Existen básicamente 4 tipos de encapsulado si lo catalogamos por su color.
Transparente o clear water (agua transparente): Es el utilizado en leds de alta potencia de emisión, ya que el propósito de estos leds es fundamentalmente iluminar, es importante que estos encapsulados no absorban de ninguna manera la luz emitida.

Coloreados o tinted: Similar al anterior pero coloreado con el color de emisión de sustrato similar al vidrio de algunas botellas, se usa principalmente en leds de mediana potencia y/o donde sea necesario identificar el color del led aun apagado.

Difuso o difused: Estos leds tiene un aspecto mas opacos que el anterior y están coloreados con el color de emisión, poseen pequeñas partículas en suspensión de tamaño microscópicos que son las encargadas de desviar la luz, este tipo de encapsulado le quita mucho brillo al led pero le agrega mucho ángulo de visión ya que los múltiples rebotes de la luz dentro del encapsulo le otorgan un brillo muy parejo sobre casi todos los ángulos prácticos de visión.

Lechosos o Milky: Este tipo de encapsulado es un tipo difuso pero sin colorear, estos encapsulado son muy utilizados en leds bicolores o multicolores. El led bicolor es en realidad un led doble con un cátodo común y dos ánodos ( 3 terminales) o dos led colocados en contraposición (2 terminales). Generalmente el primer caso con leds rojo y verde es el mas común aunque existen otras combinaciones incluso con mas colores.

Es muy importante hacer notar que en todos los casos el sustrato del led es el que determina el color de emisión y no el encapsulado. Un encapsulado con frecuencia de paso distinta a la frecuencia de emisión del sustrato solo lograría filtrar la luz del led, bajando así su brillo aparente al igual que todo objeto colocado delante de él.

Evolución de los leds

El primer led comercialmente utilizable fue desarrollado en el año 1962, combinando Galio, Arsénico y Fósforo (GaAsP) con lo cual se consiguió un led rojo con una frecuencia de emisión de unos 650 nm con una intensidad relativamente baja, aproximadamente 10mcd @20mA,(mcd = milicandela, posteriormente explicaremos las unidades fotométricas y radiométricas utilizadas para determinar la intensidad lumínica de los leds ). El siguiente desarrollo se basó en el uso del Galio en combinación con el Fósforo (GaP) con lo cual se consiguió una frecuencia de emisión del orden de los 700nm. A pesar de que se conseguía una eficiencia de conversión electrón- fotón o corriente-luz mas elevada que con el GaAsP, esta se producía a relativamente baja corrientes, un incremento en la corriente no generaba un aumento lineal en la luz emitida, sumado a esto se tenia que la frecuencia de emisión estaba muy cerca del infrarrojo una zona en la cual el ojo no es muy sensible por lo que el led parecía tener bajo brillo a pesar de su superior desempeño de conversión.

Los siguientes desarrollos, ya entrada la década del 70, introdujeron nuevos colores al espectro. Distinta proporción de materiales produjo distintos colores. Así se consiguieron colores verde y rojo utilizando GaP y ámbar, naranja y rojo de 630nm (el cual es muy visible) utilizando GaAsP. También se desarrollaron leds infrarrojos, los cuales se hicieron rápidamente populares en los controles remotos de los televisores y otros artefactos del hogar.

En la década del 80 un nuevo material entró en escena el GaAlAs Galio, Aluminio y Arsénico. Con la introducción de este material el mercado de los leds empezó a despegar ya que proveía una mayor performance sobre los leds desarrollados previamente. Su brillo era aproximadamente 10 veces superior y además se podía utilizar a elevadas corrientes lo que permitía utilizarlas en circuitos multiplexados con lo que se los podía utilizar en display y letreros de mensaje variable. Sin embargo este material se caracteriza por tener un par de limitaciones, la primera y más evidente es que se conseguían solamente frecuencias del orden de los 660nm (rojo) y segundo que se degradan mas rápidamente en el tiempo que los otros materiales, efecto que se hace más notorio ante elevadas temperaturas y humedades. Hay que hacer notar que la calidad del encapsulado es un factor fundamental en la ecuación temporal. Los primeros desarrollos de resinas epoxi para el encapsulado poseían una no muy buena impermeabilidad ante la humedad, además los primeros leds se fabricaban manualmente, el posicionamiento del sustrato y vertido de la resina era realizado por operarios y no por maquinas automáticas como hoy en día, por lo que la calidad del led era bastante variable y la vida útil mucho menor que la esperada. Hoy en día esos problemas fueron superados y cada vez son mas las fabricas que certifican la norma ISO 9000 de calidad de proceso. Además últimamente es más común que las resinas posean inhibidores de rayos UVA y UVB, especialmente en aquellos leds destinado al uso en el exterior.

En los 90 se apareció en el mercado tal vez el más éxitoso material para producir leds hasta la fecha el AlInGaP Aluminio, Indio, Galio y Fósforo. Las principales virtudes de este tetar compuesto son que se puede conseguir una gama de colores desde el rojo al amarillo cambiando la proporción de los materiales que lo componen y segundo, su vida útil es sensiblemente mayor, a la de sus predecesores, mientras que los primeros leds tenia una vida promedio efectiva de 40.000 horas los leds de AlInGaP podían mas de 100.000 horas aun en ambientes de elevada temperatura y humedad.

Es de notar que muy difícilmente un led se queme, si puede ocurrir que se ponga en cortocircuito o que se abra como un fusible e incluso que explote si se le hace circular una elevada corriente, pero en condiciones normales de uso un led se degrada o sea que pierde luminosidad a una taza del 5 % anual. Cuando el led ha perdido el 50% de su brillo inicial, se dice que ha llegado al fin de su vida útil y eso es lo que queremos decir cuando hablamos de vida de un led. Un rápido calculo nos da que en una año hay 8760 horas por lo que podemos considerar que un LED de AlInGaP tiene una vida útil de mas de 10 años.
Como dijimos uno de factores fundamentales que atentan contra este numero es la temperatura, tanto la temperatura ambiente como la interna generada en el chip, por lo tanto luego nos referiremos a técnicas de diseño de circuito impreso para bajar la temperatura.

Explicaremos un detalle de mucha importancia respecto a los leds y su construcción. Cuando se fabrica el led, se lo hace depositando por capas a modo de vapores, los distintos materiales que componen el led, estos materiales se depositan sobre una base o sustrato que influye en la dispersión de la luz. Los primeros leds de AlInGaP se depositaban sobre sustratos de GaAs el cual absorbe la luz innecesariamente. Un adelanto en este campo fue reemplazar en un segundo paso el sustrato de GaAs por uno de GaP el cual es transparente, ayudando de esta forma a que mas luz sea emitida fuera del encapsulado. Por lo tanto este nuevo proceso dio origen al TS AlInGaP (Tranparent Substrate ) y los AlInGaP originales pasaron a denominarse AS AlInGaP (Absorbent Susbtrate). Luego este mismo proceso se utilizo para los led de GaAlAs dando origen al TS GaAlAs y al As GaAlAs. En ambos casos la Eficiencia luminosa se incrementaba típicamente en un factor de 2 pudiendo llegar en algunos casos a incrementarse en un factor de 10. Como efecto secundario de reemplazar el As por el TS se nota un pequeño viro al rojo en la frecuencia de emisión, generalmente menor a los 10nm.

A final de los 90 se cerro el circulo sobre los colores del arco iris, cuando gracias a las tareas de investigación del Shuji Nakamura, investigador de Nichia, una pequeña empresa fabricante de leds de origen japonés, se llego al desarrollo del led azul, este led siempre había sido difícil de conseguir debido a su elevada energía de funcionamiento y relativamente baja sensibilidad del ojo a esa frecuencia (del orden de los 460 nm) Hoy en día coexisten varias técnicas diferentes para producir luz azul, una basada en el SiC Silicio – Carbono otra basada en el GaN Galio – Nitrógeno, otra basada en InGaN Indio-Galio-Nitrógeno sobre substrato de Zafiro y otra GaN sobre sustrato SiC. El compuesto GaN, inventado por Nakamura, es actualmente el mas utilizado. Otras técnicas como la de ZnSe Zinc – Selenio ha sido dejadas de lado y al parecer el SiC seguirá el mismo camino debido a su bajo rendimiento de conversión y elevada degradación con la temperatura.

Dado que el azul es un color primario, junto con el verde y el rojo, tenemos hoy en día la posibilidad de formar el blanco con la combinación de los tres y toda la gama de colores del espectro, esto permite que los display gigantes y carteles de mensajes variables full color se hagan cada día más habituales en nuestra vida cotidiana.

Es también posibles lograr otros colores con el mismo material GaN, como por ejemplo el verde azulado o turquesa, de una frecuencia del orden de los 505 nm. Este color es importante ya que es el utilizado para los semáforos y entra dentro de la norma IRAM 2442 Argentina y VTCSH parte 2 americana y otras. Su tono azulado lo hace visible para las personas daltónicas. El daltonismo es una enfermedad congénita que hace a quien lo padece ser parcialmente ciego a determinadas frecuencias de color, generalmente dentro de ellas esta la correspondiente al verde puro que tiene una frecuencia del orden de los 525 nm.

Otros colores también son posibles de conseguir como por ejemplo el púrpura, violeta o ultravioleta. Este ultimo es muy importante para la creación de una forma más eficiente de producir luz blanca que la mera combinación de los colores primarios, ya que añadiendo fósforo blanco dentro del encapsulado, este absorbe la radiación ultravioleta y emite frecuencia dentro de todo el espectro visible, logrando luz blanca en un proceso similar al que se produce en el interior de los tubos fluorescentes. A veces el fósforo posee una leve tonalidad amarillenta para contrarrestar el tono azulado de la luz del semiconductor.




Para tener una idea aproximada de la relación entre la frecuencia expresada en nanómetros y su correspondencia con un color determinado es que a continuación se presenta un grafico simplificado del triangulo de Maxwell o Diagrama de Cromaticidad CIE (Fig.1.2). Cada color se puede expresar por sus coordenadas X e Y. Lo colores puros o saturados se encuentran en el exterior del triangulo y a medida que nos acercamos a su centro el color tiende al blanco. El centro de la zona blanca es el blanco puro y suele expresarse por medio de la temperatura de color, en grados Kelvin, de un cuerpo negro. Simplificando podemos decir que un cuerpo negro al calentarse empieza a emitir ondas infrarrojas, al subir la temperatura empieza a tomar un color rojizo, esto es en los 770 nm, al seguir elevándose la temperatura, el color se torna anaranjado, amarillento y finalmente blanco, describiendo una parábola desde el extremo inferior derecho hacia el centro del triangulo. Por lo tanto cada color por donde pasa dicha parabola puede ser representado por una temperatura equivalente. El centro del triangulo (blanco puro) se corresponde con una temperatura de 6500 K. El tono de los leds blanco viene expresado precisamente en grados kelvin. Una temperatura superior significa un color de emisión blanco – azulado. .

Spai Chile 2008